THE REID LAB
PUBLICATIONS
Pre-Print/Submitted
40) Betinol, I. O.; Kuang, Y.; Mulley, B. P.; Reid, J. P.*: Controlling Stereoselectivity with Non-covalent Interactions in Chiral Phosphoric Acid Organocatalysis. Submitted.
• Invited submission to Chemical Reviews
39) Li, J.; Reid, J. P.*: Connecting the Complexity of Stereoselective Synthesis to the Evolution of Predictive Tools. Submitted.
• Invited submission to Chemical Science
38) Betinol, I. O.; Kuang, Y.; Lai, J.; Yousofi, C.; Reid, J. P.*: Machine Learning Enables A Top-down Approach To Mechanistic Elucidation. Chemrxiv Link
37) Lai, J.; Li, J.; Betinol, I. O.; Kuang, Y.; Reid, J. P.*: A Statistical Modeling Approach to Catalyst Generality Assessment in Enantioselective Synthesis. Chemrxiv Link
36) Davis, A. J.; Ferry, E. K.; Breen, C. P.; Zhai, J.; Jamison, T. F.; Reid J. P.; Schindler, C. S.*: Fe(III)-Catalysis in Flow Enables Bimolecular Proton Transfer as an Alternative to Superelectrophiles in Carbonyl-Olefin Metathesis. Chemrxiv Link
Published
35) Sanocki, M.; Russell, H.; Handjaya, J.; Reid, J. P.*: Relative Generality and Risk: Quantitative Measures For Broad Catalyst Success. Revision submitted to ACS Catal. 2024, 14, 16849–16860. Link
• First appeared as a preprint uploaded to Chemrxiv. Link
34) Goodman, J. M.; Reid, J. P.; Wu, J.: Introduction to Computational Organic Chemistry. Org. Biomol. Chem. 2024, 22, 7072-7073. Link
• Editorial for OBC’s special issue on “Computational Organic Chemistry”
33) Das Gupta, M.; Patrick, B. O., Reid, J. P.*; MacLachlan, M. J.*: Controlled Supramolecular Co-Assembly of Benzene-1,3,5-Tricarboxamide Metal Complexes. ACS Appl. Nano Mater. 2024, 7, 15005–15011. Link
32) Handjaya, J. P.; Patankar, N.; Reid, J. P.*: The Diversity and Evolution of Chrial Brønsted Acid Structures. Chem. Eur. J. 2024, 30, e202400921. Link
• Invited Concept Article
31) Lai, J.; Reid, J. P.*: A Bulky Imidodiphosphorimidate Brønsted Acid Enables Highly Enantioselective Prins-semipinacol Rearrangements. ACS Catal. 2024, 14, 8518–8527. Link
• First appeared as a preprint uploaded to Chemrxiv. Link
30) Plommer, H.; Betinol, I. O.; Dupree, T.; Roggen, M.*; Reid, J. P.* Extraction Yield Prediction for the Large-Scale Recovery of Botanicals. Digital Discovery, 2024, 3,155-162. Link
• Industry collaboration
• First appeared as a preprint uploaded to Chemrxiv. Link
29) Goonesinghe, C.; Jung, H.-J.; Betinol, I. O.; Gaffen, J.; Garrard, C. N.; Chang, J.; Hosseini, K.; Roshandel, H.; Patrick, B. O.; Baumgartner, T.; Caputo, C. B.; Reid, J. P.; Mehrkhodavandi, P.*: Rethinking the Lewis acidity of cationic gallium and indium complexes. ACS Catal. 2023,13, 16147-16157.
28) Reid, J. P.*; Betinol, I. O.; Kuang, Y.: Mechanism to Model: A Physical Organic Chemistry Approach to Reaction Prediction. Chem. Commun. 2023, 59, 10711-10721. Link
• Invited feature article for ChemCommun's Emerging Investigators Collection 2023
• Highlighted as ChemCommun HOT article
• Highlighted on the cover
27) Betinol, I. O.§; Lai, J.§; Thakur, S.; Reid, J. P.*: A Data-Driven Workflow for Assessing and Predicting Generality in Asymmetric Catalysis. J. Am. Chem. Soc. 2023, 145, 12870-12883. Link
• First appeared as a preprint uploaded to Chemrxiv. Link
26) Danby, P. M.; Jeong, A.; Sim, L.; Sweeney, R. P.; Wardman, J. F.; Karimi, R.; Geissner, A.; Worrall, L. J.; Reid, J. P.; Strynadka, N. C. J.; Withers, S. G.*: Vinyl Halide-Modified Unsaturated Cyclitols are Mechanism-Based Glycosidase Inhibitors. Angew. Chem. Int. Ed. 2023, 62, e202301258. Link
25) Das Gupta, M.; Boott, C. E.; Goon, J. E.; Patrick, B. O., Reid, J. P.*; MacLachlan, M. J.*: Controlled Supramolecular Self-Assembly of Uniform Nanostructures from Trimetallic Complexes. ACS Appl. Nano Mater. 2023, 6, 4672–4680. Link Lin
24) Kuang, Y.; Lai, J.; Reid, J. P.*: Transferrable Selectivity Profiles Enable Prediction in Synergistic Catalyst Space. Chem. Sci. 2023, 14, 1885-1895. Link
• Highlighted in the Most Popular Catalysis Collection 2023 Link
• First appeared as preprint uploaded to Chemrxiv. Link
23) Zhai, J.; Reid, J. P*: Reaction Mechanisms for Chiral Phosphate Catalyzed Transformations Involving Cationic Intermediates and Protic Nucleophiles. Synlett, 2022, 33, A-K. Link
• Invited account for Cluster on Dispersion
22) Lai, J.; Reid, J. P.*: Interrogating the Thionium Hydrogen Bond as a Noncovalent Stereocontrolling Interaction in Chiral Phosphate Catalysis. Chem. Sci. 2022, 13, 11065-11073. Link
• Highlighted as ChemSci pick of the week
• Highlighted as Chemical Science HOT article
• Highlighted in most popular 2022 physical and theoretical chemistry articles
• Highlighted on ChemSci Voices
21) Betinol, I. O.; Reid, J. P.*: A Predictive and Mechanistic Statistical Modelling Workflow for Improving Decision Making in Organic Synthesis and Catalysis. Org. Biomol. Chem. 2022, 20, 6012-6018. Link
• Invited Submission For The “New Talents” Special Issue
20) Betinol, I. O.; Kuang, Y.; Reid, J. P.*: Guiding Target Synthesis with Statistical Modeling Tools: A Case Study in Organocatalysis. Org. Lett. 2022, 24, 1429-1433. Link
• Featured on the Front Cover of Organic Letters
19) Reid, J. P.*: Open Questions On The Transfer Of Chirality. Commun. Chem. 2021, 4, 171. Link
18) Riehl, P. S.; Richardson, A. D.; Sakamoto, T.; Reid, J. P.*; Schindler, C. S.*: Origin of enantioselectivity reversal in Lewis acid-catalysed Michael additions relying on the same chiral source. Chem. Sci. 2021, 12, 14133-14142. Link
17) Shoja, A.; Zhai, J.; Reid, J. P.*: Comprehensive Stereochemical Models For Selectivity Prediction In Diverse Chiral Phosphate Catalyzed Reaction Space. ACS Catal. 2021, 11, 11897–11905. Link
16) Shoja, A.; Reid, J. P.*: Computational Insights into Privileged Interactions Involving Chiral Phosphates and Iminium Intermediates. J. Am. Chem. Soc. 2021, 143, 7209-7215. Link
Prior to UBC
15) Reid, J. P.§; Hu, M.§; Itoh, S.; Xiang, H.; Hong, C. M.; Sigman, M. S.; Toste, F. D.: Strategies for Remote Enantiocontrol in Chiral Gold(III) Complexes Applied to Catalytic Enantioselective Diels-Alder Reactions. Chem. Sci. 2020, 11, 6450-6456. Link
• Highlighted as 2020 Chemical Science HOT Article
14) Becker, M. R.§; Reid, J. P.*§; Rykaczewski, K. A.; Schindler, C. S.: Statistical Models for Understanding Divergent Reactivity in Lewis Acid-Catalyzed Transformations of Carbonyls and Olefins. ACS Catal. 2020, 10, 4387-4397. Link
• First appeared as preprint uploaded to Chemrxiv. Link
13) Reid, J. P.§; Proctor, R. S. J§.; Sigman, M. S.; Phipps, R. J.: Predictive Multivariate Linear Regression Analysis Guides Successful Catalytic Enantioselective Minisci Reactions of Diazines. J. Am. Chem. Soc. 2019, 141, 19178-19185. Link
• Highlighted in Synfacts: Predictive Analysis to Expand the Heterocycle Scope of the Catalytic Asymmetric Minisci Reaction. Synfacts 2020, 16, 210.
12) Reid, J. P.; Sigman, M. S.: Holistic prediction of enantioselectivity in asymmetric catalysis. Nature 2019, 571, 343-348. Link
• Press release: https://attheu.utah.edu/facultystaff/improving-the-odds-of-synthetic-chemistry-success/
• Highlighted in News & Views: Norrby, P.-O.: Holistic models of reaction selectivity. Nature 2019, 571, 332-333.
• Selected as Nature’s weekly “Hot Topic”
• Featured in “The Medicine Maker” magazine
11) Kwon, Y.; Li, J.; Reid, J. P.; Crawford, J. M.; Jacob, R.; Sigman, M. S.; Toste, F. D.; Miller, S. J.: Disparate Catalytic Scaffolds for Atroposelective Cyclodehydration. J. Am. Chem. Soc. 2019, 141, 6698-6705. Link
• Highlighted in Synfacts: Atroposelective Cyclodehydration Enabled by Disparate Catalytic Scaffolds. Synfacts 2019, 15, 1055.
10) Reid, J. P.; Ermanis, K.; Goodman, J. M.: BINOPTimal: A Web Tool for Optimal Chiral Phosphoric Acid Catalyst Selection. Chem. Commun. 2019, 55, 1778-1781. Link
9) Albright, H.; Riehl, P. S.; McAtee, C. C.; Reid, J. P.; Ludwig, J. R.; Karp, L.; Zimmerman, P. M.; Sigman, M. S.; Schindler, C. S.: Catalytic Carbonyl-Olefin Metathesis of Aliphatic Ketones: Iron(III) Homo-Dimers as Lewis Acidic Superelectrophiles. J. Am. Chem. Soc. 2019, 141, 1690-1700. Link
8) Hananya, N.§; Reid, J. P.§; Green, O.; Sigman, M. S.; Shabat, D: Rapid chemiexcitation of phenoxy-dioxetane luminophores yields ultrasensitive chemiluminescence assays. Chem. Sci. 2019, 10, 1380-1385. Link
7) Reid, J. P.; Sigman, M. S.: Comparing quantitative prediction methods for the discovery of small-molecule chiral catalysts. Nat. Rev. Chem. 2018, 2, 290-305. Link
6) Reid, J. P.; Goodman, J. M.: Selecting Chiral BINOL-derived Phosphoric Acid Catalysts: General Model to Identify Steric Features Essential For Enantioselectivity. Chem. Eur. J. 2017, 23, 14248-14260. Link
5) Reid, J. P.; Goodman, J. M.: Transfer Hydrogenation of ortho-Hydroxybenzophenone Ketimines Catalysed by BINOL-derived Phosphoric Acid Occurs by a 14-Membered Bifunctional Transition Structure. Org. Biomol. Chem. 2017, 15, 6943-6947. Link
4) Reid, J. P.; Goodman, J. M.: Goldilocks Catalysts: Computational Insights into the Role of the 3,3’ Substituents on the Selectivity of BINOL-Derived Phosphoric Acid Catalysts. J. Am. Chem. Soc. 2016, 138, 7910-7917. Link
• Highlighted as a JACS spotlight paper.
• 1 of 12 Editor’s Choice JACS papers of 2016.
3) Reid, J. P.; Simón, L.; Goodman, J. M.: A Practical Guide for Predicting the Stereochemistry of Bifunctional Phosphoric Acid Catalyzed Reactions of Imines. Acc. Chem. Res. 2016, 49, 1029-1041. Link
2) Reid, J. P.; McAdam, C. A.; Johnston, A. J. S.; Grayson, M. N.; Goodman, J. M. Cook, M. J.: Base-Mediated Cascade Rearrangements of Aryl-Substituted Diallyl Ethers. J. Org. Chem. 2015, 80, 1472-1498. Link
• Highlighted on the Organic Chemistry Portal.
1) Johnston, A. J. S., McLaughlin, M. G.; Reid, J. P.; Cook, M. J.: NaH Mediated Isomerisation-Allylation Reaction of 1,3-Substituted Propenols. Org. Biomol. Chem. 2013, 11, 7662-7666. Link
Note:
§Authors contributed equally